управления,
система автоматического управления (См.
Автоматическое управление)
, в которой управляющие воздействия методом поиска автоматически изменяются т. о., чтобы осуществлялось наилучшее (в каком-то смысле) управление объектом; при этом характеристики объекта или внешние возмущения могут изменяться неизвестным заранее образом. Принцип автоматического поиска лежит в основе действия самоприспосабливающихся
систем (См.
Самоприспосабливающаяся система)
. П. с. существенно отличаются от следящих
систем (См.
Следящая система) и
систем стабилизации без поиска (в т. ч.
систем программного регулирования), в которых устраняется до допустимых пределов рассогласование между заданными значениями регулируемых параметров и их текущими или средними значениями путём воздействия на управляющие переменные
x (
t)
, зависящего от этого рассогласования; при этом требуется, чтобы отношение выходных параметров
y (
t)
объекта управления к его входным параметрам
x (
t) не меняло знак:
const. (1)
Однако для множества различных объектов, технологических и др. процессов типично то, что их статические и динамические характеристики могут изменяться произвольно. Таковы, например, полёт самолёта, процессы горения, многие химические реакции и др. При этом часто, наряду с нарушением условия (1), между целевыми функциями (характеризующими цель управления) и входным воздействием имеется статическая взаимосвязь экстремального вида. В таких системах количество начальной информации об объекте недостаточно для достижения цели управления. Естественный путь восполнения недостающей информации - определение её в процессе работы.
Структурная схема П. с. показана на
рис. Состояние объекта управления определяется управляющими воздействиями
= [
x1(
t)
,..., xm (
t)], внешними возмущениями
= [
f1(
t)
,..., fk (
t)] è âûõîäíûìè ïàðàìåòðàìè
= [
y1(
t), ...,
yn (
t)]
. В П. с. входят: устройство формирования цели управления (УЦ), устройство организации поиска (УП) и органы управления (ОУ). УЦ состоит из измерительного и вычислительного устройств и по показателям состояния объекта вырабатывает показатель цели управления R̅[
x (
t)]. Ôóíêöèîíàë R?[
x (
t)] ìîæåò èçìåíÿòüñÿ è ïåðåíàñòðàèâàòüñÿ â çàâèñèìîñòè îò ïåðåìåííûõ
= [?
1(
t), ..., υ
i (
t)]. УП включает устройства логического действия и зависимости от изменения R̅[
x (
t)]; оно вырабатывает командные сигналы
, необходимые для приближения системы к заданному значению показателя цели управления.
Поиск осуществляется следующим образом: на вход объекта подаются пробные воздействия и оценивается реакция на них объекта, проявляющаяся в виде изменения значения целевой функции R̅(t); далее в УП определяются те воздействия, которые изменят показатель цели в нужную сторону; вслед за этим вырабатываются и подаются на вход объекта соответствующие сигналы, т. е. прикладываются рабочие воздействия. Затем на объект управления снова подаются поисковые воздействия и цикл повторяется.
Наиболее распространённые методы поиска: метод Гаусса - Зейделя, при котором последовательно отыскивается экстремум выхода по 1-й, 2-й,..., m-й координате входного воздействия; метод градиента, состоящий в том, что новое входное воздействие получается из предыдущего в результате движения системы по градиенту выходного функционала; метод случайного поиска, при котором используются пробные смещения в случайных направлениях; метод стохастической аппроксимации, состоящий в последовательном приближении к экстремуму с учётом результатов предыдущих поисковых шагов, с постепенным уменьшением размера шага.
В первых П. с. требовалось отыскивать и поддерживать управляющие воздействия, обеспечивающие наибольшие или наименьшие (экстремальные) значения целевой функции (например, наибольшую дальность полёта самолёта, наибольший кпд устройства, наибольшую температуру в топке, наименьшую стоимость продукции и т.д.). Такие П. с. называются системами экстремального регулирования (См.
Экстремальное регулирование) (СЭР) или экстремальными системами. Идея экстремального регулирования как нового направления в развитии
систем автоматического управления впервые была выдвинута в СССР (В. В. Казакевич, 1944). Главное преимущество экстремальных
систем состоит в том, что они не требуют значительной начальной информации об управляемом объекте, а также высокой точности измерительной аппаратуры, дающей текущую информацию об объекте, - эта аппаратура должна лишь иметь чувствительность, достаточную для характеристики тенденции (направления) изменения контролируемых параметров.
Часто П. с. используется совместно с моделью объекта (см.
Моделирование)
. В этом случае оптимальное значения параметров объекта выбираются методом поиска не на самом объекте, а на его модели. Затем значения этих параметров устанавливаются на объекте. Подобные системы применяют, например, для автоматического управления самолётом (автопилот).
П. с. применяют также для стабилизации регулируемого параметра. Это необходимо в том случае, когда нарушается условие (1). При этом целевая функция может иметь вид
или
,
(
- заданное значение выходного параметра), причём П. с. должна отыскивать минимум R̅(
t)
.
Лит.: Казакевич В. В., Об экстремальном регулировании, в сборнике: Автоматическое управление и вычислительная техника, в. 6, М., 1964; Фельдбаум А. А., Вычислительные устройства в автоматических системах, М,, 1959; Красовский А. А., Динамика непрерывных самонастраивающнхся систем, М., 1963; Первозванский А. А., Поиск, М., 1970; Растригин Л. А., Системы экстремального управления, М., 1974.
В. В. Казакевич.
Структурная схема поисковой системы управления: ОУ - органы управления; УП - устройство организации поиска; УЦ - устройство формирования цели управления;
t) - управляющее воздействие;
(t) - внешние возмущения;
(t) - выходной параметр;
(t) - корректирующее воздействие;
(t) - показателъ цели управления (функционал);
(t) - командные сигналы.